BROMOPEROXIDASE IN THAI SEAWEEDS

1 7 ส.ค. 2532

BANCHA VEVOKEKI

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
(BIOCHEMISTRY)

FACULTY OF GRADUATE STUDIES
MAHIDOL UNIVERSITY
1988
การทำแยกตามชุมชนวิทยาการค้นพบว่า เอนไซม์ไบรโอเบอริโอกริซิเดสในสุนัขจะมีอัตราการเจริญเติบโตที่สูงในสีเบอร์ 421 และสีเบอร์ 143. ถูกใช้เป็นสับเปลี่ยน. มีช่วงเวลาที่เอนไซม์ไบรโอเบอริโอกริซิเดสกลายเป็นไม่สามารถใช้ในสุนัข. การแยกเอนไซม์จากสุนัขจะใช้การทำให้เอนไซม์ไบรโอเบอริโอกริซิเดสสูงการแยกจากผ่าน DEAE-cellulose column. เอนไซม์ไบรโอเบอริโอกริซิเดสสามารถใช้ในไตรภูมิต้องและไอโอติโอตอลเมื่อมีไอโอติโอเจนเบอริโอกริซิเดสและออฟฟิชีเลสแลท.

น้ำหนักโมเลกุลของเอนไซม์ไบรโอเบอริโอกริซิเดสประมาณ 54,000 ซึ่งถูกกำหนดโดย Sephadex G-100 column และยังมีอีก 4 isoenzyme bands. ถูกแยกเมื่อใช้ isoelectric focusing. มีฤทธิ์ในการค้นพบไบรโอเบอริโอกริซิเดสสามารถเกิดได้ตั้งแต่ 0.1 มิลลิลิตร. เอนไซม์ไบรโอเบอริโอกริซิเดสในสีเบอร์ 421 โดยทั่วไปจะมีอัตราการเจริญเติบโต 2.1x10^{-5} M แต่การละลายเป็น KBr ทำให้เอนไซม์ไบรโอเบอริโอกริซิเดส 421 ใช้ในสีเบอร์ 143. สารละลาย KBr ถูกใช้เป็นสียีนเทิร์นิคในชื้นจะทำให้เอนไซม์ไบรโอเบอริโอกริซิเดส 1.7c
$10^{-2}$ มิ. ตามผลิตภัณฑ์ ไนผลิตภัณฑ์ รวมที่ยิ่งสิ่งเกิน 143 เป็นสบับเกียรติค่า Km เท่ากัน
5.1$x10^{-6}$ มิ. ขณะที่ Km ของ H2O2 เท่ากับ $1.3x10^{-4}$ มิ. และ Km ของ KBr เท่ากับ $1.5$x$10^{-2}$ เอนไซม์เปรียบเทียบสิ่งจาก Polycarvermoss ได้ปัญญา activity โดย NaN, KCN และสิ่งสิ่งที่คุณใช้เข้มข้นสูงสุด
โดย เอนไซม์มีเสถียรภาพในช่วง 9H, สิ่งเพาะ 11 และมี optimum pH ที่ 5.4 เอนไซม์สามารถยกต่อความร้อนได้สูงถึง 50 องศาเซลเซียสโดยไม่เสียสภาพ
ชีวภาพในการ stain activity ของไปเปรียบเทียบสิ่งที่ทำโดยใช้สิ่งเกิน 143

ลักษณะการต่างๆ activity ของไปเปรียบเทียบสิ่งที่ทำจาก
เครื่องสบับเกียรติวัสดุโดยใช้ agarose gel และกระดาษกระดาษถูกซับผ่านให้ใช้เป็นวิธีใหม่ล่าสุดต่างๆ activity ของอนุสรณ์.
Thesis Title: Bromoperoxidase from Thai Seaweeds

Name: Bancha Veokeki

Degree: Master of Science (Biochemistry)

Thesis Supervisory Committee:

Bhinyo Panijpan
Pintip Ruenwongsa
Pitchit Tosukhowong
Amaret Bhumiratana

Date of Graduation: May 23, 1988

ABSTRACT

Thai seaweeds were surveyed for haloperoxidase activity. Monochlorodimedone, C.I. 421 and dye No. 143 were used as substrates. Only bromoperoxidase activity was found. The isolation and purification of bromoperoxidase from the marine red algae, Polycarvernosa, is described. By using a DEAE-cellulose column, 48% yield and 12 fold purification of bromoperoxidase was obtained. The bromoperoxidase can utilize bromide ions and iodide ions in the presence of hydrogen peroxide and a halogen acceptor.

Based on gel filtration by Sephadex G-100 column the molecular weight of bromoperoxidase was 54,000 and at least 4 isoenzyme bands were seen when isoelectric focusing was performed. It was found that partially purified bromoperoxidase was better kept at 4°C than at -20°C and lyophilization. The apparent Km value for monochlorodimedone
was $2.2 \times 10^{-5}$M, that for $\text{H}_2\text{O}_2$ was $9.1 \times 10^{-5}$M and KBr was $1.1 \times 10^{-2}$M. For C.I. 421 as substrate, Km value was $1.2 \times 10^{-5}$M whereas the apparent Km value for $\text{H}_2\text{O}_2$ was $7.2 \times 10^{-5}$M and KBr was $1.7 \times 10^{-2}$M. In case of dye No. 143 as substrate, its apparent Km value was $5.1 \times 10^{-6}$M while Km for $\text{H}_2\text{O}_2$ was $1.3 \times 10^{-4}$M and that for KBr was $1.5 \times 10^{-2}$M. Bromoperoxidase from *Polycarvernosa* was inhibited by hemoprotein inhibitors NaN$_3$ and KCN. It was also inhibitable by high concentrations of substrates. Some properties of partially purified bromoperoxidase such as pH optimum, pH stability and heat stability are reported. The optimum pH of the enzyme was 5.8, and the enzyme was stable in a range from pH 6.0 to 11.0. The enzyme was heat-stable. It resisted denaturation at 50°C. Staining the activity of bromoperoxidase was performed by using dye No. 143-74-8.

For detecting the bromoperoxidase activity without spectrophotometry, the agarose gel and the filter paper were developed as the new convenient methods. Dye No. 143-74-8 with agarose gel and filter paper were used for detecting the bromoperoxidase activity from various marine algae.