POTENTIATED MECHANISM OF CARBONTETRACHLORIDE INDUCED HEPATOTOXICITY
BY THINNER INHALATION

BY

JINTANAPORN NHONGSAENG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
(PHYSIOLOGY)

IN THE

FACULTY OF GRADUATE STUDIES
OF
MAHIDOL UNIVERSITY

1986
POTENTIATED MECHANISM OF CCl₄-INDUCED HEPATOTOXICITY BY THINNER INHALATION IN RATS

Jintanaporn Nhongsang

Department of Physiology, Faculty of Science, Mahidol University
Rama VI Road, Bangkok 10400, Thailand

ABSTRACTS

The possible mode of action of thinner on enhancing CCl₄-induced hepatotoxicity was studied in rats. The animals were housed in a chamber with the continuous flow of thinner vapour at the rate of 1.11 g/liter/hr for 2 hrs prior to administration of CCl₄ (0.1 ml/kg BW) at 18 hrs after thinner inhalation. Thinner inhalation potentiated CCl₄ (0.1 ml/kg BW)-induced hepatotoxicity in a dose-dependent fashion. The maximal enhanced effect was observed at 24 hrs after CCl₄ administration by which the activity of plasma glutamic oxalacetic transaminase and plasma glutamic pyruvic was significantly increased (3 folds), from transaminase 373±40 to 1366±210 units (P<0.001) and 361±35 to 1127±161 units (P<0.001) respectively. Thinner by itself caused an increase in accumulation of liver triglycerides and it exerted additive action on CCl₄-induced liver triglyceride accumulation by 2 folds from 13.2±1.2 to 25.6±1.9 mg/kg liver (P<0.001). This finding confirms our previous reported in which thinner given i.g. (4.0 ml/kg) could enhance hepatic necrosis in the rat and two major constituents, methanol (1022 ppm) and toluene (842 ppm) are responsible for this potentiated effect by increasing the activity of PGOT from 373±40 to 1233±40 (P<0.001) and to 990±15 units (P<0.005) respectively. At 18 hr after thinner inhalation or at the time of
Following CCl₄ administration, the activity of NADPH cytochrome c reductase was markedly increased from 99±6 to 217±21 nmoles/min/mg protein (P<0.001), but no change in the activity of aminopyrine N-demethylase. At 18 hr after thinner pretreatment, thinner was able to increase the binding of ¹⁴CCL₃ free radical both to the hepatic microsomal protein from 1.0±0.2 to 1.8±0.3 nmoles/mg protein and to the hepatic microsomal lipid from 1.1±0.2 to 1.6±0.3 nmoles/mg protein (P<0.001) and increased the CCl₄-induced lipid peroxidation from 28.36±3.0 to 40.9±2.8 μg/g liver (P<0.001). These results indicate that thinner pretreatment cause an increase in mixed function oxidases, NADPH-cytochrome c reductase to activate the formation of ¹⁴CCL₃ free radical which in turn stimulate hepatic damage via lipid peroxidation in the membrane.