PROXIMITY EFFECTS SANDWICH CONTAINING NONMAGNETIC BOUND STATES

BY

SOMCHAI LILANUTCHAKUL

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (APPLIED MATHEMATICS)
IN THE
FACULTY OF GRADUATE STUDIES
OF
MAHIDOL UNIVERSITY

1984

Copyright by Mahidol University

13158
Abstract

Based upon the tunnelling model of McMillan for the proximity effect in normal - superconducting sandwich, we study the case when the normal metal film contains non magnetic impurities. The Coulomb repulsion between d electrons of opposite spin is taken into account. The renormalization energy gap functions for normal, superconducting and impurity electrons at temperature close to absolute temperature are calculated. The density of states of each layer are calculated as functions of frequency for a large range of impurity concentration, type of impurities (Td) and several value of Coulomb repulsion energy in order to see whether there is any formation of bound states in the energy gap region. The results shows that bound states do not form in that region.