MICROENCAPSULATION OF SOYBEAN OIL BY SPRAY DRYING AND FLUIDIZED BED AGGLOMERATION WITH SOY PROTEIN ISOLATE AND MALTODEXTRIN

PLENGSUREE THIENGNOI 4637881 SCBT/D

Ph.D. (BIOTECHNOLOGY)

THESIS ADVISORY COMMITTEE: MANOP SUPHANTHARIKA, Ph.D., SITTIWAT LERTSIRI, Ph.D., APINYA ASSAVANIG, Ph.D., PAIROJ LUANGPITUUKSA, Dr.Agr.Chem.

ABSTRACT

The aim of this study was to investigate the feasibility of microencapsulation of soybean oil serving as a model core material (25 or 50% w/w of dry matter) by spray drying using the wall system (20% w/w) consisting of soy protein isolate (either SPI 1 or SPI 2) and maltodextrins (MD) with different dextrose equivalent (DE) values (7.5 to 24), and then subjected to agglomeration by fluidized bed processing. For both SPIs, the properties of the core-in-wall emulsions and consequently the microencapsulation efficiency (MEE) of the resultant spray-dried microcapsules were adversely affected by an increase in the oil load levels. Even though emulsion oil droplet size was not significantly affected by DE, MEE of the resultant spray-dried microcapsules increased with increasing DE values of MD. Combinations of either SPI 1 or SPI 2 and high DE maltodextrins were found to be effective wall systems for microencapsulation of oil. Spray drying of the emulsions led to small particles (~20 μm) having poor handling and reconstitution properties. Agglomeration of the spray-dried microcapsules with maltodextrin as an aqueous binder solution using a fluidized bed agglomerator improved the handling and reconstitution properties of the powders. The optimum binder type and concentration was found to be 15% (w/v) maltodextrin of DE 14 which resulted in the largest particle size of the agglomerated powder (657 μm) having a very good flowability and low cohesiveness. The wettability (wetting time = 3 s) and dispersibility (98%) of this agglomerated powder were very satisfactory.

KEY WORDS: SOYBEAN OIL/ MICROENCAPSULATION/ SPRAY DRYING/ AGGLOMERATION/ FLUIDIZED BED

142 pages
MICROENCAPSULATION OF SOYBEAN OIL BY SPRAY DRYING AND FLUIDIZED BED AGGLOMERATION WITH SOY PROTEIN ISOLATE AND MALTODEXTRIN

แปลศูนย์ เที่ยงน้อย 4637881 SCBT/D

ผภ.(เทคโนโลยีชีวภาพ)

คณะที่ปรึกษาวิทยานิพนธ์ : มหาด สุรพงษ์วิชา, Ph.D., ศิริธรวัฒน์ เลิศศิริ, Ph.D., อภิญญา อัศวทัศน์, Ph.D., ไพโรจน์ หลวงพิทักษ์, Dr.Arg.Chem.

บทคัดย่อ

งานวิจัยนี้ศึกษาถึงความเป็นไปได้ของการใช้สารก่อกุญแจน้ำมันอั่วหลอด (ที่ปริมาณ 25 และ 50 เปอร์เซ็นต์ของน้ำหนักแห้ง) ด้วยวิธีการห่านพ่นแบบพ่นต่อในระบบทางของสารก่อกุญแจ (ความเข้มข้น 20 เปอร์เซ็นต์ น้ำหนักแห้ง) ที่ประกอบด้วยโปรตีนแอกทิจจากเข้มข้น (SPI 1 หรือ SPI 2) กับผลิต

โดยเด็กซ์ทรินที่มีค่าสัมประสิทธิ์เด็กซ์ทรินแตกต่างกัน (7.5-24) หลังจากนี้จึงทำให้เกิดกลุ่มผุ้ด้วยกระบวนการจากชุดโปรตีนก่อกุญแจเข้มข้นในการห่านพ่น

ด้วยสารของพ่นหลอดได้รับผลกระทบในที่สุดทางกลุ่มขั้นตอนการเพิ่มปริมาณน้ำมันอั่วหลอด ถึงแม้ว่า

ขนาดอนุภาคของเม็ดไขมันในระบบมิตรซ่อม จะไม่ได้รับผลกระทบจากค่าความแตกต่างของสัม

ประสิทธิ์ เคราะห์ประสิทธิ์ในการห่านพ่นของสารของพ่นแห้งเพิ่มขึ้น เมื่อค่าสัมประสิทธิ์เด็กซ์ทรินของ

ผลิตโดยเด็กซ์ทรินที่มีค่าสัมประสิทธิ์เด็กซ์ทรินสูงจะมีประสิทธิภาพในการห่านพ่นน้ำมัน การทำ

แปลนพ่นจะทำให้ได้ขนาดอนุภาคที่มีขนาดเล็ก (ประมาณ 20 มิลลิเมตร) ซึ่งมีคุณสมบัติ

ในการก่อกุญแจและกำลังอักษรในน้ำด้าน วิธีการกระก่อกุญแจชุดฟู่ดีซ์เมดแบบของน้ำมันอั่วหลอด

ผนย ได้ใช้สารละลายออกโดยเด็กซ์ทรินเป็นสารละลายอ่อนระหว่างอนุภาคแห้งด้วยเครื่องกำลังแบบ

พฤติกรรมเป็นสารละลายปรุงคูณสมบัติการละลายในน้ำได้ จากการทดลองพบว่าชนิดและ

ความเข้มข้นของสารละลายช่วยให้ค่าสัมประสิทธิ์เด็กซ์ทริน 15 เปอร์เซ็นต์ น้ำหนักบริเวณของผลิตโดยเด็กซ์

ทรินที่มีค่าสัมประสิทธิ์เด็กซ์ทรินสูง 14 ชั่วโมงทำให้ได้อนุภาคที่มีขนาดใหญ่ที่สุด (675 มิลลิเมตร) และ

มีคุณสมบัติในการชีวิตในระดับต่ำกว่าน้ำมัน คูณสมบัติการเป็นกุญแจของ

อนุภาค大幅 (เวลาที่มีอนุภาคหนักเป็นอนุภาคต่ำกว่า 3 วันเท่า) และคูณสมบัติการแปรจนใน

น้ำ (98 เปอร์เซ็นต์) มีค่าสูง

142 หน้า