EVALUATION OF DENSONUCLEOSIS VIRUSES AS POTENTIAL BIOLOGICAL CONTROL AGENTS OF DENGUE VECTORS

SUPANEE HIRUNKANOKPUN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (BIOLOGY) FACULTY OF GRADUATE STUDIES MAHIDOL UNIVERSITY 2007

COPYRIGHT OF MAHIDOL UNIVERSITY
การประเมินความเป็นไปได้ในการใช้เดนโซไวรัสเป็นตัวควบคุมทางชีวภาพของยุงพาหะนำโรคไขเลือดออก (EVALUATION OF DENSONUCLEOSIS VIRUSES AS POTENTIAL BIOLOGICAL CONTROL AGENTS OF DENGUE VECTORS)

สุภาณี หิรัญกนกพันธ์ 4537993 SCBI/D
ปร.ด. (ชีววิทยา)

คณะกรรมการควบคุมวิทยานิพนธ์: ปทมาภรณ์ กฤตยพงษ์, Ph.D., วิสุทธิ์ ใบไม้, Ph.D., JOHN R. MILNE, Ph.D.

บทคัดย่อ

ยุงลายชนิด Aedes aegypti เป็นพาหะที่สำคัญในการนำโรคไขเลือดออกและทำให้เกิดปัญหาที่สําคัญต่อสุขภาพ ฉะนั้นจะมีการพัฒนาการควบคุมยุงลายด้วยวิธีต่างๆ เพื่อป้องกันโรค ที่จะประสบความสําเร็จในการควบคุมโรคไขเลือดออก การวิจัยนี้มีวัตถุประสงค์เพื่อที่จะประเมินศักยภาพของเดนโซไวรัสในการเป็นตัวควบคุมทางชีวภาพของยุงลาย Ae. aegypti โดยการเปรียบเทียบอัตราการตายและการติดเชื้อของไวรัสในยุงลายชนิด Aedes aegypti การทดลองนี้ได้จัดการทดสอบสายพันธุ์ดีเอ็นเอของเดนโซไวรัสสี่สายพันธุ์คือ ATDNV, AaPV, AeDNV และ APeDNV พบว่าเดนโซไวรัสทุกสายพันธุ์สามารถฆ่าลูกน้ําของยุงลายได้ มีการติดเชื้อสูงกว่า 80% ในยุงลายทั้งสามสายพันธุ์ ยุงลายมีอัตราการตายสูงสุดถึง 90% ภายใน 10 วัน เมื่อมีการติดเชื้อเดนโซไวรัลในยุงลายชนิด Ae. aegypti ยุงลายจากเขตเจริญกรุงเทพฯ จำนวนหนึ่งที่ติดเชื้อเดนโซไวรัลสามารถถ่ายทอดไวรัสนี้ไปยังรุนต่อไปในระยะเวลานาน 22-50% เมื่อวิเคราะห์ความสัมพันธ์ทางวิวัฒนาการพบว่าเดนโซไวรัสนี้เป็นกลุ่มเดนโซไวรัล โดยที่เรียก Bacillus thuringiensis var. israelensis และเดนโซไวรัสสายพันธุ์ไทยในการควบคุมยุงลาย Ae. aegypti โดยการทดลองในห้องปฏิบัติการและในสภาพภูมิคุ้มกันธรรมชาติ พบว่าการใช้ไรน์วิโคนกับจุลินทรีย์ Bt และเดนโซไวรัสสายพันธุ์ไทยนั้นมีประสิทธิภาพสูงสุดในการควบคุมปัจจัยสุขภาพ ยุงลาย Aedes aegypti จึงคาดว่าการควบคุมยุงลายแบบผสมผสานนี้เป็นวิธีการใหม่ที่สามารถนำไปใช้ในการควบคุมยุงลาย สายพันธุ์ดีเอ็นเอของไวรัสนี้สามารถมีความแตกต่างในอัตราการตายของยุงลายชนิด Ae. aegyptiและดีเอ็นเอของไวรัสนี้สามารถมีอัตราการตายสูงสุด 58.33% แต่เมื่อทดสอบทางสถิติพบว่าไม่มีความแตกต่างของอัตราการตายของยุงลายชนิด Ae. aegypti และดีเอ็นเอของไวรัสนี้
EVALUATION OF DENSONUCLEOSIS VIRUSES AS POTENTIAL
BIOLOGICAL CONTROL AGENTS OF DENGUE VECTORS

SUPANEE HIRUNKANOKPUN 4537993 SCBI/D
Ph.D. (BIOLOGY)

THESIS ADVISORS: PATTAMAPORN KITTAYAPONG, Ph.D., VISUT BAIMAI, Ph.D., JOHN R. MILNE, Ph.D.

ABSTRACT

Aedes aegypti is the main vector of dengue and dengue hemorrhagic fever and represents a significant public health problem. Many strategies, such as vector eradication programs, chemical control measures and environmental sanitation with community participation, have been used to prevent or control dengue outbreaks. Although many programs for mosquito control have been developed, there has been limited contemporary success in controlling the dengue vector. The purpose of this research was to determine the potential of densoviruses as biological control agents of *Ae. aegypti* mosquitoes. Four mosquito densovirus strains, *AThDNV*, *AaPV*, *AeDNV* and *APeDNV* were assayed for mortality and infectivity against larvae of *Aedes aegypti* from different geographic regions. All strains of densoviruses exhibited larvicidal activity and caused >80% mortality and infectivity in the three mosquito strains. *AaPV*-infected *Ae. aegypti* larvae had the highest mortality rate, >90% mortality within 10 days in all mosquito strains. A few mosquitoes from Chachoengsao and Bangkok exposed to *AeDNV* and *AThDNV* survived to the adult stage and showed 22-50% vertical transmission in the F1 generation. Phylogenetic analysis of four densovirus strains used in this study and those other reference strains indicated that these mosquito densoviruses could be separated into two clades. Laboratory and semi-field studies were conducted to evaluate the efficiency of *Mesocyclops thermocyclopiodes* (copepods), *Bacillus thuringiensis* var. *israelensis* (Bti) and the Thai densovirus strain (*AThDNV*) against *Aedes aegypti* larvae collected from dengue endemic areas in Chachoengsao Province, Thailand. Mosquito larvae were exposed to each biocontrol agent alone and to combinations of them and the surviving mosquitoes were monitored weekly. The combination of copepod-Bti-densovirus provided better mosquito control than using each treatment alone or using combinations of two of them. These novel integrative approaches could possibly be applied in different endemic areas to control dengue transmission. The pathogenicity to *Ae. aegypti* mosquitoes of the *AeDNV* strain with altered sequence context at the starting codon of the NS1 gene was evaluated. Viral DNA replication determined by real-time PCR was not significantly different among *AeDNV*-mutant and wild type strains. *AeDNV*-mutant2 caused the highest mortality in mosquitoes (58.33%) but was not significantly different from the others when analyzed by ANOVA analysis (F=1.915; df= 11, 44; p= 0.140).

KEY WORDS: *AEDES AEGYPTI*/ DENGUE/ DENSOVIRUS/ MESOCYCLOPS THERMOCYCLOPOIDES/ BACILLUS THURINGIENSIS VAR. *ISRAELENSIS*/ DENGUE VECTOR/ MOSQUITO CONTROL

111 pp.