EFFECT OF Pr DOPING ON THE SUPERCONDUCTIVITY OF
Bi$_2$Sr$_2$CaCu$_2$O$_y$ (Bi2212)

THIPVAN MUANGON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE
(APPLIED ANALYTICAL AND INORGANIC CHEMISTRY)
FACULTY OF GRADUATE STUDIES
MAHIDOL UNIVERSITY
2005

ISBN 974-04-6472-6
COPYRIGHT OF MAHIDOL UNIVERSITY
การศึกษาผลของการเติมไอออนเพรสซิโอดิเมียมต่อสภาพตัวนำยิ่งยวดของระบบ Bi$_2$Sr$_2$CaCu$_2$O$_y$ (Bi2212) (EFFECT OF Pr DOPING ON THE SUPERCONDUCTIVITY OF Bi$_2$Sr$_2$CaCu$_2$O$_y$ (Bi2212))

พิพัฒน์รัตน์ น่วงองค์ 4536504 SCAI/M

วท.ม. (กี.วี.ค.และกี.เอ็น.ฟิช.)

คณะกรรมการควบคุมคุณวิชาการ: ลัดดาวัลย์ ผดุงทรัพย์, Ph.D. (Inorganic Chemistry), พงษ์พิทย์ วินิจจ์, Ph.D. (Statistical Mechanics)

บทคัดย่อ

ในการวิจัยนี้ต้องการศึกษาผลของการเติมไอออนเพรสซิโอดิเมียม (Pr) ลงในสารตัวนำยิ่งยวดอุณหภูมิสูงในระบบ Bi$_2$Sr$_2$CaCu$_2$O$_y$ (Bi2212) ที่เตรียมด้วยวิธีการเตรียมสารที่อุณหภูมิสูง 800 องศาเซลเซียสเป็นเวลา 24 ชั่วโมง และเผาซิลิโคนที่อุณหภูมิ 840 องศาเซลเซียสเป็นเวลา 120 ชั่วโมง

ได้ศึกษาโครงสร้างผลึก โครงสร้างจุลภาค องค์ประกอบของสารที่มีอยู่ในชิ้นงาน และสมบัติของสารตัวนำยิ่งยวด เช่น ความต้านทานและคุณสมบัติทางแม่เหล็ก

ผลจากการศึกษาการเปลี่ยนแปลงของรังสีเอกซ์พบว่าชิ้นงานที่เตรียมได้ทั้งที่ไม่มีตัวเติมและมีตัวเติม มีโครงสร้างส่วนใหญ่เป็นสารตัวนำยิ่งยวดในระบบที่ต้องการคือ Bi2212 และมีส่วนน้อยที่มีโครงสร้างเป็นสารในระบบ Bi 2201 ด้วยขั้นตอนการเผาแคลไซน์ที่อุณหภูมิ 800 องศาเซลเซียสและ การวิเคราะห์องค์ประกอบของสารดูจะชัดเจนในชิ้นงานพบว่าตัวเติมของสารขององค์ประกอบที่ต้องการเรียกขัน

จากผลการศึกษา ESR พบว่าไอออนเพรสซิโอดิเมียมที่มีเลขออกซิเดชัน 4+ อาจเข้าไปแทนตัวแหน่งของแคลเซียม เลขออกซิเดชันของออกซิเจนอยู่ในช่วง 2.11-2.24 และปริมาณออกซิเจนในชิ้นงาน (8+δ) อยู่ระหว่าง 8.4-8.8

ผลการศึกษาสมบัติของสารตัวนำยิ่งยวดพบว่าอุณหภูมิวิกฤตลดลงเมื่อปริมาณตัวเติมมากขึ้น การลดลงอุณหภูมิวิกฤตของเพรสซิโอดิเมียมเมื่อเลือกตัวเติมมากกว่า 3+ เข้าไปมีผลให้ความเข้มข้นของชิ้นงานในระบบของออกซิเจนลดลง

70 หน้า ISBN 974-04-6472-6
ABSTRACT

The purpose of this work is to study the effect of Pr doping on the superconductivity of Bi$_2$Sr$_2$CaCu$_2$O$_y$ (BSCCO) prepared by standard solid state reaction method. The mixed powders were calcined at 800 °C for 24 hours and sintered at 845 °C for 120 hours.

The crystal structure, microstructure, and composition of the products, and the oxidation state of praseodymium and copper were determined, as well as their superconducting properties such as resistivity(ρ) and DC molar magnetization(M).

The results showed that all samples consisted mainly of the Bi$_2$Sr$_2$Ca$_{1-x}$Pr$_x$Cu$_2$O$_y$ (Bi2212) phase with a minor impurity Bi2201 phase. The occurrence of grains with a platelet-like structure was a signature of the Bi2201 phase formation from the Bi2212 matrix, mostly due to the prolonged sintering process.

The ESR results together with ESR simulation suggested that some Pr ions might enter the Ca site as Pr$^{4+}$. The average oxidation state of copper was 2.11-2.24 and the total oxygen content of sample (8+δ) was found between 8.4-8.8, depending on the composition.

The superconducting properties were observed from Tc which could be determined by using the four-point probe and SQUID techniques. The results from both methods revealed that Tc decreased with increasing doping concentration. The decrease was due to the fact that the Pr valence was greater than +3 and thus resulted in a decrease in hole concentration of the Cu-O$_2$ layers.

KEY WORDS: Pr-DOPED BSCCO / SUPERCONDUCTING PROPERTIES

70 P. ISBN 974-04-6472-6