พันธุ์วิศวกรรมเพื่อศึกษาความสัมพันธ์ของโลหะที่มีต่อความสามารถในการทําปฏิกิริยาของเอนไซม์

PURPLE ACID PHOSPHATASES จากมันเทศ (GENETIC ENGINEERING OF SWEET POTATO PURPLE ACID PHOSPHATASES FOR METAL SENSING)

ธีรวิทยา วรัตรุจิวงศ์ 4237517 SCBI/D

Ph.D. (ธีรวิทยา)

คณะกรรมการควบคุมวิทยานิพนธ์: พระวรควร วิสุทธิวิเศษ Ph.D., FRIEDRICH SPENER Ph.D., จรัญญา ณรงคะชวนะ Ph.D., พิมพ์ใจ เยื้อน Ph.D., ศริศักดิ์ ดู กวัชชัย D.Sc.

บทคัดย่อ

Purple acid phosphatases (PAPs) เป็นเอนไซม์ที่ได้มาจากมันเทศ เอนไซม์นี้แยกออกเป็น 3 จำพวกตามลักษณะโครงสร้างพื้นฐานและชนิดของโลหะที่บริเวณเร่งปฏิกิริยาดังนี้ spPAP1 ประกอบด้วย Fe(III)-Zn(II) และ spPAP2 ประกอบด้วย Fe(III)-Mn(II) ส่วน spPAP3 ยังไม่ทราบชนิดของโลหะรู แต่จากคีโนном CNA พบว่า ดังนั้นเพื่อศึกษาชนิดของโลหะที่บริเวณเร่งปฏิกิริยาของเอนไซม์ spPAP3 จึงได้ผลิตเอนไซม์สังเคราะห์โดยใช้เซลล์แมลง พบว่าสามารถผลิตเอนไซม์บริสุทธิ์ออกมาได้ระดับ 4.5 มิลลิกรัมต่อลิตร (หลังจากผ่านขั้นตอนพันธะ disulfide และผ่านการทำให้บริสุทธิ์альต้นเพียง 2 ขั้นตอนเท่านั้น) จากการศึกษาคุณลักษณะของเอนไซม์นี้แล้วพบว่า เอนไซม์สังเคราะห์ spPAP3 เร่งปฏิกิริยาได้ดีที่สุดในเฉพาะชนิดที่มีโลหะที่น้อยหลักเพื่อการทำงานเข้าไปในบริเวณที่เร่งปฏิกิริยา 4.5 มิลลิกรัมต่อลิตร ประกอบด้วย Fe(II) หรือ Mn(II) หรือ Zn(II) หรือ Zn(II) แต่การเปลี่ยนแปลงโลหะเหล่านี้ประกอบไปด้วยหลายอนุมูลที่มีความแตกต่างกันในการทำงานตามที่โครงการที่เร่งปฏิกิริยาได้ดีที่สุด ซึ่งชัดเจนมากที่สุด ซึ่งเป็นตามที่มีผลในการทำงานของเอนไซม์ spPAP3 ประกอบด้วย Fe-Fe ที่บริเวณเร่งปฏิกิริยา

วิธีการเพาะกลวเพาะที่นั้นได้มีการใช้เพื่อศึกษาประสิทธิภาพของอีเล็กทรอนิกส์มีผลต่อการเร่งปฏิกิริยาในระดับมวล โดยทำเปลี่ยนแปลงโครงสร้างของเอนไซม์ในช่วง Tyr 291 ซึ่งอยู่ในเรื่องที่มีความสำคัญกับการจัดการ ดังนั้นจะเป็น His และ Ala ซึ่งผลจากอีเล็กทรอนิกส์ spPAP1 และ spPAP2 ตามลำดับ จากการศึกษาพบว่า เมื่อทำการเปลี่ยนชนิดของอีเล็กทรอนิกส์เป็น His แล้ว จะทำให้ประสิทธิภาพในการทำงานของเอนไซม์ spPAP3 ได้ผลต่อเนื่องแต่เปลี่ยนชนิดของอีเล็กทรอนิกส์ไปเป็น Ala นั้นมีผลทำให้ประสิทธิภาพลดลง

150 หน้า ISBN 974-04-6707-5
GENETIC ENGINEERING OF SWEET POTATO PURPLE ACID PHOSPHATASES FOR METAL SENSING

TEERAWIT WARATRUJIWONG 4237517 SCBI/D

Ph.D. (BIOLOGY)

THESIS ADVISORS : PORNSAWAN VISOOTTIVISETH Ph.D., FRIEDRICH SPENER Ph.D., JARUNYA NARANGAJAVANA Ph.D., PIMCHAI CHAIYEN Ph.D., SARISAK SOONTORNCHAI D.Sc.

ABSTRACT

Purple acid phosphatases (PAPs) from sweet potato (sp) have been classified on the basis of primary structure and dinuclear metal center into isoforms spPAP1 [Fe(III)-Zn(II)] and spPAP2 [Fe(III)-Mn(II)]; for spPAP3 the cDNA only is known. With the aim to unravel the character of the dinuclear metal center, the characterization of this isof orm at protein level is reported here. spPAP3-cDNA was cloned into baculovirus and overexpressed this enzyme in Sf9 insect cells. Work-up of recombinant spPAP3 in two steps afforded pure enzyme with yields of 4.5 mg/L culture medium. The recombinant spPAP3 is a dimeric, disulfide-linked PAP of 110 kDa, similar to known PAP isoforms obtained from higher plants. Enzymatic studies and spectroscopic properties (max. abs. at 550-565 nm) indicated a diiron enzyme. Quantitative and semi-quantitative metal analysis by ICP-OES and TOF-SIMS, respectively, revealed the presence of iron only in purified spPAP3. Metal replacement in the second metal binding site upon preparation of the semiapo-enzyme with Fe(II), Zn(II), or Mn(II) revealed highest activities with Fe(II). These data demonstrate that recombinant spPAP3 has a diiron metal center.

Site-directed mutagenesis was carried out to check catalytic efficiency at the atomic level. Tyr291 in the substrate binding site in spPAP3 was mutated to His and Ala, the respective residues found in spPAP1 and spPAP2. Kinetic analysis showed that conversion of Tyr291 to His further optimized the performance of this protein as a diiron enzyme, while the Ala mutation weakened the catalytic efficiency regardless of the metal present in the second binding site.

KEY WORDS: PURPLE ACID PHOSPHATASE / SWEET POTATO / SEMIAPO-ENZYME / SITE-DIRECTED MUTAGENESIS