STUDIES OF PROLACTIN ACTION ON
SOLVENT DRAG-INDUCED ACTIVE CALCIUM
TRANSPORT IN RAT DUODENUM

CHAIYOT TANRATTANA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE (PHYSIOLOGY)
FACULTY OF GRADUATE STUDIES
MAHIDOL UNIVERSITY
2003

ISBN 974-04-3857-1
COPYRIGHT OF MAHIDOL UNIVERSITY
การศึกษาผลของโพรแลคตินต่อการดูดซึมแคลเซียมแบบตามการไหลของตัวทำละลายในลำไส้เล็ก ของหนูแรท (STUDIES OF PROLACTIN ACTION ON SOLVENT DRAG-INDUCED ACTIVE CALCIUM TRANSPORT IN RAT DUODENUM)

ชัยยศ ธนาศรี 4336192 SCPS/M

วท.ม. (สรีรวิทยา)

คณะกรรมการควบคุมวิทยานิพนธ์: นทีทิพย์ กลุนนามะ, ปร.ด., เลียงชัย อิ่มต้มวงศ์, Ph.D., ชัยวัฒน์ สกุลดิษฐ, ปร.ด.

บทคัดย่อ

การศึกษาผลของแคลเซียมเพื่อการดูดซึมแคลเซียมแบบผ่านเซลล์และแบบผ่านช่องระหว่างเซลล์ตามการไหลของตัวทำละลาย คาดที่ศึกษาได้ผลแสดงผลของแคลเซียมที่มีบทบาทไม่ในการควบคุมการดูดซึมของแคลเซียม สามารถออกที่การดูดซึมแคลเซียมแบบผ่านเซลล์ ตามที่ศึกษาในครั้งนี้ ซึ่งมีผลประการที่ศึกษาผลผลิตหลั้นของโพรแลคตินต่อการดูดซึมแคลเซียมแบบผ่านเซลล์ของระยะยาวของลำไส้เล็กทำให้เกิดส่วนตัวดีมิมของหนูแรท เพศผู้ น้ำหนัก 200-250 กรัม การทดลองนี้ใช้เทคนิคสัตว์ทดลองเพื่อวัดการขนส่งแคลเซียม โดยใช้ยับยั้งการดูดซึมแคลเซียมแบบผ่านเซลล์ด้วยสารที่ยับยั้งการทำงานของเอนไซม์ Ca^{2+}-ATPase

จากผลการทดลองพบว่าโพรแลคตินที่ความเข้มข้น 200 และ 600 นาโนกรัม/มิลลิลิตร เพิ่มการดูดซึมของแคลเซียมอย่างมีนัยสำคัญทางสถิติ จาก 24.3 ± 2.36 นาโนโมลต่อชั่วโมงต่อตารางเซนติเมตร เป็น 45.42 ± 3.47 (p<0.01) และ 63.82 ± 5.28 (p<0.001) ในขณะที่โพรแลคตินที่ความเข้มข้นสูง 800 และ 1,000 นาโนกรัม/มิลลิลิตรลดการดูดซึมแคลเซียมซึ่งแสดง Biphasic action ของโพรแลคtin คาดว่าส่วนระหว่างการดูดซึมแคลเซียมจากไหลได้สูงขึ้นและจากเดิมสู่ไหลได้สูงขึ้น การขนส่งแคลเซียมแบบผ่านเซลล์มีผลกระทบต่อการขนส่งแคลเซียม ซึ่งศึกษาที่ได้ส่วนอิสระของแคลเซียมไม่มีผลต่อการขนส่งแคลเซียม ซึ่งมีเนื้อที่ยั้งการทำงานของเอนไซม์ cytoskeleton เพิ่มการขนส่งแคลเซียม (paracellular marker) ไม่มีผลต่อการขนส่งแคลเซียม ผลการทดลองนี้ได้เห็นกลไกที่ave ที่ระเบียบปฏิกิริยาของ tight junction โดยคงเก็บผลการทำงานของสารโดยขึ้นที่ระเบียบปฏิกิริยาของแคลเซียมและประจุส่วนที่ดูดโดยมีการขนส่งแคลเซียมที่ระเบียบปฏิกิริยาของ tight junction ที่ทำให้เกิดส่วนตัวดีมิมและจุดที่แตกต่างกันและความของโพรแลคตินที่ทำให้เกิดการขนส่งแคลเซียมแบบผ่านช่องระหว่างเซลล์ได้โดยมีผลต่อการขนส่งแคลเซียมแบบผ่านช่องระหว่างเซลล์

โดยสรุปโพรแลคตินสามารถกระตุ้นการดูดซึมแคลเซียมแบบตามการไหลของตัวทำละลายได้โดยตรงและอย่างชัดเจน ทำให้โอกาสในการควบคุมการขนส่งแคลเซียมนั้นไม่มีข้อขัดข้องกับกลไกในการขนส่งแคลเซียม

ISBN 974-04-3857-1
STUDIES OF PROLACTIN ACTION ON SOLVENT DRAG-INDUCED ACTIVE CALCIUM TRANSPORT IN RAT DUODENUM

CHAIYOT TANRATTANA 4336192 SCPS/M

M.Sc. (PHYSIOLOGY)

THESIS ADVISORS : NATEETIP KRISHNAMRA, Ph.D., LIANGCHAI LIMLOMWONGSE, Ph.D., CHAIVAT TOSKULKAO, Ph.D.

ABSTRACT

Duodenal active calcium (Ca) absorption consists of two pathways i.e., transcellular and solvent drag-induced paracellular pathway. We have recently shown that prolactin (PRL), with its novel role in the regulation of Ca metabolism, enhanced the transcellular component. Therefore, the present study aimed to evaluate the acute PRL effect on the paracellular active Ca transport in the duodenum of 200-250 g female Wistar rats. Ussing chamber technique was used to measure the electrical parameters and the bidirectional calcium fluxes (as calculated from specific activity of \(^{45}\text{Ca}\)). The transcellular Ca transport was inhibited by adding Ca\(^{2+}\)ATPase inhibitor into the serosal solution.

PRL in the concentrations of 200 and 600 ng/ml significantly increased the mucosa-to-serosa flux of calcium from the control value of 24.3 ± 2.36 nmol.hr\(^{-1}\).cm\(^{-2}\) to 45.42 ± 3.47 (p<0.01) and 63.82 ± 5.28 nmol.hr\(^{-1}\).cm\(^{-2}\) (p<0.001) in a dose-response manner. Higher concentrations of 800 and 1,000 ng/ml however, returned the fluxes towards control value i.e., 53.93 ± 5.41 and 29.05±2.61 nmol.hr\(^{-1}\).cm\(^{-2}\) thus showing the biphasic action of PRL. Plotting of the mucosa-to-serosa and serosa-to-mucosa flux ratio confirmed the existence of the two components of the active Ca absorption. The finding that prolactin had no effect on the jejunum while cytochalasin E (inhibitor of cytoskeleton activity) increased the flux of mannitol (a paracellular marker) in the jejunum without affecting the mucosa-to-serosa flux of Ca demonstrated the separate size and charge selective properties of tight junction. In contrast, duodenal mannitol flux was not affected by cytochalasin E, while calcium flux was significantly enhanced by 600 ng PRL/ml. The results suggested that (i) duodenal and jejunal tight junctions were structurally different, and (ii) PRL altered the charge selectivity of the intercellular channels without affecting the size selectivity of duodenal tight junction.

Therefore, it was concluded that PRL directly and acutely enhanced the paracellular solvent drag-induced active calcium absorption in the duodenum. This paracellular transport mechanism for calcium was not directly related to the junctional transport of mannitol.

KEY WORDS : ACTIVE CALCIUM ABSORPTION/ DUODENUM/ PARACELLULAR TRANSPORT/ PROLACTIN

78 P. ISBN 974-04-3857-1