การเจริญเติบโต การสร้างสปอร์ การสร้างผลึกโปรตีน และความเป็นพิษของเชื้อจุลินทรีย์ Bacillus thuringiensis subsp. kurstaki HD-73 ที่เจริญในหลายแหล่งของอาหารเชิงซ้อน (GROWTH, SPORULATION, CRYSTAL FORMATION OF BACILLUS THURINGIENESIS SUBSPECIES KURSTAKI HD-73 GROWN ON VARIOUS COMPLEX NUTRIENT SOURCES)

ศิลป์ โนนกลาง 4236969 SCBT/M

วท.ม. (เทคโนโลยีชีวภาพ)

คณะกรรมการควบคุมวิทยานิพนธ์: คณะเวร์เดิน, Ph.D., วิทยา มิรุทิติ, Ph.D., สมชาย เชื้อวัชรินทร์, Ph.D.

บทคัดย่อ

ได้มีการศึกษาการเจริญ การสร้างสปอร์และผลึกโปรตีนของเชื้อจุลินทรีย์ Bacillus thuringiensis subsp. kurstaki HD-73 เมื่อเลี้ยงในอาหารเชิงซ้อนหลายแหล่งได้แก่ สารสกัดจากยีสต์, casitone, peptone, casamino acids, สารละลายส่วนใสของcorn steep solid, fish meal และ fish soluble ปริมาณโปรตีนทั้งหมด (TN) ในทุกแหล่งอาหารมีค่าเท่ากันคือ 1.01 กรัม/ลิตร จากผลการศึกษาพบว่า แหล่งอาหารเชิงซ้อนทุกชนิดช่วยส่งเสริมให้เชื้อจุลินทรีย์การเจริญ (µmax: 0.42-0.99/ชม.) การสร้างสปอร์ (0.42-0.69 x 10⁹ สปอร์/ลิตร) และการสร้างผลึกโปรตีน (0.28-0.43 กรัม/ลิตร) อยู่ในระดับที่เหมาะสมตามลำดับ รูปแบบการเจริญของเชื้อโดยสรุปจากค่า OD600 พบว่าในช่วงเวลาที่ 2-10 ค่า OD600 มีการเพิ่มขึ้นอย่างรวดเร็ว ภายหลังจากนั้นจะมีการเพิ่มขึ้นที่คงที่หรือลดลงตามลำดับ แต่เมื่อมีการเติมกลูโคส (10 กรัม/ลิตร) ลงไปในแหล่งอาหารเชิงซ้อนกล่าวที่ว่า เชื้อจุลินทรีย์มีการสร้างสปอร์และผลึกโปรตีนเพิ่มขึ้น 2-3 เท่า ขณะที่เมื่อไม่มีการเติมกลูโคสลงในอาหาร รูปแบบการใช้ amino nitrogen (AN) ไม่มีการเปลี่ยนแปลงเมื่อเทียบกับอาหารที่ไม่มีการเติมกลูโคส จากการศึกษาความเป็นพิษของผลึกโปรตีนต่อตัวอ่อนของนายกระทูผัก (Spodoptera litura) พบว่าผลึกโปรตีนจากแหล่งอาหารเชิงซ้อนที่มีกลูโคสมีความเป็นพิษในระดับสูงกว่า ยกเว้นผลึกโปรตีนจากอาหารที่มี fish meal เป็นองค์ประกอบมีความเป็นพิษที่ต่ำกว่า โดยในช่วงขยายการเจริญของอาหารเชิงซ้อนการเติม protease activity อยู่ในระดับที่ค่อนข้างสูง ซึ่งอาจทำให้เกิดการย่อย ผลึกโปรตีนได้เป็นส่วนอย่างที่ไม่ไม่มีผล

นอกจากนี้ได้มีการศึกษาผลกระทบของการเติมกลูโคส (50 mM) ลงไปในอาหารเชิงซ้อนช่วงเวลาของการเจริญ ที่มีการสร้างสปอร์และผลึกโปรตีน โดยมีการศึกษาที่กำหนดระดับของกลูโคสที่ต้องการเจริญ จุลินทรีย์ได้ในอาหารที่ไม่มีกลูโคสและมีกลูโคสเป็นองค์ประกอบ ตลอดจนผูกพันที่จะมีการเติมกลูโคสในช่วง ท้ายของการเจริญ จากผลการศึกษาพบว่าในช่วงสุดท้าย เชื้อจุลินทรีย์มีการสร้างสปอร์และผลึกโปรตีน เพิ่มขึ้น 2-3 เท่า เมื่อมีการเติมกลูโคสช่วงต้นของการเจริญ ผลึกโปรตีนในอาหารที่ไม่มีการเติมกลูโคสในระยะท้ายของการเจริญ ยกเว้นในอาหารที่มี corn steep solid และกลูโคส เป็นองค์ประกอบ เซลล์และผลึกโปรตีนเพิ่มขึ้นเพียง 0.5 เท่า เมื่อเทียบกับอาหารระดับการเติมกลูโคสที่ไม่มี การเติมกลูโคสช่วงต้นของการเจริญ ยกเว้นผู้ที่มีการเติมกลูโคสช่วงต้นของการเจริญ มีผลลักษณะที่ชัดเจนกว่า นอกจากรูปแบบการเจริญจะมีการเติมกลูโคสช่วงต้นของการเจริญแล้ว ยังมีการติดเชื้อจุลินทรีย์ในแหล่งหลังๆ ภายหลังการเติมกลูโคสช่วงต้น ผลลักษณะที่ชัดเจนกว่า ยกเว้นผู้ที่มีการเติมกลูโคสช่วงต้นของการเจริญ
ABSTRACT

The sporulation, crystal formation and growth kinetics of *Bacillus thuringiensis* subsp. *kurstaki* HD-73 were investigated on several complex nutrient sources consisting of yeast extract, casitone, peptone, casamino acids and the soluble parts of corn steep solids, fish meal and fish solubles. The initial total nitrogen (TN) corrected for free ammonium was fixed at 1.01 g/l. All complex nutrient sources efficiently supported growth (μ_max: 0.42-0.99/h, based on OD_600), sporulation (spore count: 0.42-0.69 x 10^9 spores/ml) and crystal formation (crystal protein: 0.28-0.43 g/l). The growth curve, based on OD_600, showed a typical pattern: OD_600 rapidly increased between 2.5-10 h and then slightly increased until the end of cultivation. Ammonium production took place throughout the cultivation without net consumption. Inclusion of 1% (w/v) glucose increased both spore count and crystal protein by ca. 2-3 fold. Ammonium and acetic acid was simultaneously re-consumed. The amino nitrogen (AN) consumption-profile was not effected by the presence of glucose. Toxicities of crystal protein obtained from some complex nutrients combined with glucose against the first-instar larvae of *Spodoptera litura* were comparable, except for fish meal which had low toxicity; in the latter medium, the protease level at the latter stage of cultivation was relatively high.

The effect of a glucose pulse in the medium at the end of the growth phase on spore and crystal protein formation was also examined. The cultures were pre-grown on media with and without glucose. The addition of glucose (50 mM) after growth cessation increased spore count and crystal protein by 2-3 times in all media, except for corn steep solid-glucose-based medium (ca. 50%). In the latter medium, ammonium limitation occurred after glucose addition. The re-consumption of ammonium after glucose addition suggested that glucose was not only functioning as an energy source but also used as a C-source. Rather it appeared that the addition of glucose induced the re-growth of cells.

KEY WORDS: Bacillus thuringiensis / Physiology / Toxicity / Sporulation / Crystal Protein / Complex Nutrients