การปรุงปิ๊ซุ่งปฏิกริยาของโพลดีเมอร์ (Reactive processing) เป็นการทำปฏิกิริยาแบบไม่ใช้ตัวทำ
สารในเครื่องผสม ซึ่งในบางกรณีอาจทำให้โพลดีเมอร์เกิดการซ้อนรูปรได้เมื่อผ่านออกมาจากเครื่องผสม
เนื่องจากโดยทั่วไปการใช้วิธีทำสารจะนิยมใช้ตัวทำสารของการที่ใช้ทำปฏิกิริยาและค้นทุนการเคลื่อนต์
สูง ในการนี้จึงได้พิจารณาปฏิกริยาโพลีไจนีเซชันและโพลีซีเอชเคลือบยางป้องกันโพลีไจนีเซชันแบบไม่ใช้ตัวทำสาร นั่น ใช้
p-toluenesulphonyl hydrazide (TSH) เป็นสารให้ไหลในเครื่อง โดยเท่ากับ 2 ชั่วโมงคือ 2 ชั่วโมงการผสม
ถัง TSH ในเครื่องผสมแล้วจึงทำให้เกิดปฏิกิริยาด้วยความร้อนในแม่พิมพ์แบบอัด ซึ่งพบว่ามีช่วงต้น
เป็นวิธีที่เหมาะสม จากการศึกษาของอูดูรูนิมิ เวลา และผลสัมฤทธิ์โดยโมลส์ของสารที่ใช้เพียงบาร์มิค
พันชุดต่อเบอร์ซิ่งก์ดีแล้วคิดไปโดยเร็ว พบว่าเบอร์ซิ่งก์ดีแล้วคิดไปโดยเร็วของยางป้องกันโดยที่ไม่ต้องต่ำ
ถึง 16-36% ขึ้นกับสภาวะโดยโมลส์ของสารที่ใช้คิดเปรียบเทียบอยู่ที่อูดูรูนิมิ และเวลาในการทำปฏิกิริยา
เพิ่มขึ้น เบอร์ซิ่งก์ดีแล้วคิดไปโดยเร็วจะมีระดับขึ้นชั่วโมงละ 1-20% ขึ้นกับสภาวะโดยโมลส์ของสารที่
ใช้คิดเปรียบเทียบอยู่ การละลายของ TSH ในเนื้อยางที่ถูกตัดถูกที่อูดูรูนิมิสำหรับการทำปฏิกิริยาเป็นปัจจัยสำคัญที่
ทำให้เบอร์ซิ่งก์ดีแล้วคิดไปโดยเร็วของยางป้องกันโดยที่ไม่ต้องต่ำ ที่ปริมาณโดยโมลส์ของสารที่ใช้คิดเปรียบเทียบอยู่
ที่ทำกับพันว่าปฏิกิริยาโพลีไจนีเซชันของยางป้องกันโดยที่ไม่ต้องต่ำและกระบวนการปรุงปิ๊ซุ่งปฏิกริยาให้เบอร์ซิ่งก์
การคิดเปรียบเทียบโดยที่ไม่ต้องต่ำการการทำปฏิกิริยาเปรียบเทียบการคิดเปรียบเทียบการสูงสุดที่ได้คือ 20% และ 34%
ขึ้นกับปริมาณโดยโมลส์ของสารที่ใช้คิด
ปริมาณพันต่ำกว่าเป็น 1:2 หรือ 1:1ปฏิกิริยาโพลีไจนีเซชันของยางซีเมียได้โดยเร็ว พบว่าให้
เบอร์ซิ่งก์ดีแล้วคิดไปโดยเร็วที่ต่างกัน นอกจากนี้ยังพบว่า cis-trans isomerisation เกิดควบคู่ไปกับ
ปฏิกิริยาโพลีไจนีเซชันที่ขึ้นอย่างบาร์มิคโดยใช้และยางซีเมีย จากการศึกษาความเสถียรทางความร้อนพบว่า
ยางป้องกันโดยที่ทำปฏิกิริยาโพลีไจนีเซชันแล้วจะมีความเสถียรทางความร้อนมากขึ้นแต่ในการที่ทำระยะเวลา
กรรมชีวิตของความเสถียรทางความร้อนลดลง

อีกชั่วโมงขั้นตอนของยางซีเมียในเครื่องผสมโดยใช้ m-chloroperbenzoic acid (m-CPBA)
ไม่ประสบผลสำเร็จ เนื่องจากเบอร์ซิ่งก์ดีแล้วคิดไม่คุ้มค่า (1-10%) แม้ว่าจะปริมาณเป็นเวลา
และสัดส่วนโดยโมลส์ของสารที่ใช้คิดเปรียบเทียบพันต่ำ ทั้งนี้เนื่องจากเปรียบเทียบจะควบคุมอูดูรูนิมิของซีเมีย
ของไม่ค่อยและที่ลดลงเวลาในเครื่องผสม
Reactive processing of a polymer is a solventless method of performing a chemical reaction on a polymer while simultaneously physically shaping it in the processing equipment. Because the use of solvents typically limits reaction conditions and imposes costs, the present chemistry is increasingly shifting downstream to reactive processing. In the present study, two reactions, hydrogenation and epoxidation by reactive processing of butadiene rubber (BR) and natural rubber (NR), were studied. Experimental procedures for carrying out the reactions were established. For hydrogenation performed by a noncatalytic method using p-toluenesulphonyl hydrazide (TSH) as a hydrogenating agent, two steps composing premixing of the rubber with TSH followed by hydrogenation in compression mould proved to be suitable. The effects of the reaction temperature, reaction time and mole ratio of TSH to double bond, [TSH]/[C=C], on the percentage of hydrogenation were studied.

The percentages of hydrogenation of solid BR attained were relatively low, i.e., 16-36% depending on the [TSH]/[C=C] ratio. Increasing the reaction temperature and reaction time resulted in increases of the percentage of hydrogenation. The increases were between 1 and 20% depending on the [TSH]/[C=C] ratio involved. Limited solubility of TSH in BR was believed to be the major factor responsible for the attainment of relatively low percentage of hydrogenation of BR. However, for the same [TSH]/[C=C] ratio, hydrogenation of BR by reactive processing gave higher percentage of hydrogenation than that of the reaction carried out in solution. For NR, the highest percentages of hydrogenation attained were 20% and 34%, depending on whether the nominal [TSH]/[C=C] ratios of 1:2 and 1:1 were used, respectively. Solution hydrogenation of NR also gave much lower percentages of hydrogenation. Cis-trans isomerisation was also observed in the hydrogenation of both BR and NR. The thermal stability of hydrogenated BR was distinctly improved over that of unhydrogenated counterpart but the improvement for NR was less certain.

Epoxidation of solid NR in the internal mixer using m-chloroperbenzoic acid (m-CPBA) proved to be unsuccessful. Only low percentages of epoxidation (1-10%) were obtained despite varying the reaction time and the [TSH]/[C=C] ratio. The difficulty in lowering and maintaining the temperature of the reaction mixture at low levels required for efficient epoxidation while in the mixer was believed to be the reason for the poor results.